source.discrete package

Submodules

source.discrete.Finite module

class source.discrete.Finite.Bernoulli(p: float)[source]

Bases: source.discrete.Finite.Finite

This class contains methods concerning the Bernoulli Distribution. Bernoulli Distirbution is a special case of Binomial Distirbution 1 2.

\[\text{Bernoulli} (x;p) = p^n (1-p)^{1-x}\]
Parameters
  • p (-) -- event of success. Either 0 or 1.

  • x (-) -- possible outcomes. Either 0 or 1.

References

1

Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BernoulliDistribution.html

2

Wikipedia contributors. (2020, December 26). Bernoulli distribution. https://en.wikipedia.org/w/index.php?title=Bernoulli_distribution&oldid=996380822

cdf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], int, numpy.ndarray]) -- data point(s) of interest

Raises

ValueError -- when there exist a value of x not equal to 0 or 1

Returns

evaluation of cdf at x

Return type

Union[float, numpy.ndarray]

kurtosis() float[source]
Returns

kurtosis of Bernoulli distribution

Return type

float

mean() float[source]
Returns

mean of Bernoulli distribution

Return type

float

median() Union[List[int], int][source]
Returns

median of Bernoulli distribution

Return type

Union[List[int], int]

mode() Union[Tuple[int, int], int][source]
Returns

mode of Bernoulli distribution

Return type

Union[Tuple[int, int], int]

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], int, numpy.ndarray]) -- random variable(s)

Raises

ValueError -- when there exist a value of x that is not 0 or 10

Returns

evaluation of pmf at x

Return type

Union[float, numpy.ndarray]

static pmf_s(p: float, x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
Parameters
  • p (float) -- event of success, either 0 or 1

  • x (Union[List[int], int, numpy.ndarray]) -- random variable(s)

Raises
  • ValueError -- when parameter p does not belong to the domain [0,1]

  • ValueError -- when there exist a value in a random variable that is not 0 or 1

Returns

evaluation of pmf at x

Return type

Union[float, numpy.ndarray]

skewness() float[source]
Returns

skewness of Bernoulli distribution

Return type

float

std() float[source]
Returns

standard deviation of Bernoulli distribution

Return type

float

summary() Dict[str, Union[int, float, List[int], Tuple[int, int]]][source]
Returns

Dictionary of Bernoulli distirbution moments. This includes standard deviation.

var() float[source]
Returns

variance of Bernoulli distribution

Return type

float

class source.discrete.Finite.Binomial(n: int, p: float)[source]

Bases: source.discrete.Finite.Finite

This class contains functions for finding the probability mass function and cumulative distribution function for binomial distirbution 3 4 5.

\[\text{Binomial}(x;n,p) = \binom{n}{x} p^k (1-p)^{n-x}\]
Parameters
  • n (int) -- number of trials

  • p (float) -- success probability for each trial. Where 0 <= p <= 1.

  • x (int) -- number of successes

References

3

NIST/SEMATECH e-Handbook of Statistical Methods (2012). Binomial Distribution. Retrieved at http://www.itl.nist.gov/div898/handbook/, December 26, 2000.

4

Wikipedia contributors. (2020, December 19). Binomial distribution. https://en.wikipedia.org/w/index.php?title=Binomial_distribution&oldid=995095096

5

Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BinomialDistribution.html

cdf(x: Union[int, List[int], numpy.ndarray]) Union[int, numpy.ndarray][source]
Parameters

x (Union[int, List[int], np.ndarray]) -- random variable or list of random variables

Returns

evaluation of cdf at x

Return type

Union[int, numpy.ndarray]

keys() Dict[str, Union[float, int, Tuple[int, int]]][source]
Returns

Dictionary of Binomial distirbution moments. This includes standard deviation.

kurtosis() float[source]
Returns

the kurtosis of Binomial Distribution.

mean() float[source]
Returns

the mean of Binomial Distribution.

median() Tuple[int, int][source]
Returns

the median of Binomial Distribution. Either one defined in the tuple of result.

mode() Tuple[int, int][source]
Returns

the mode of Binomial Distribution. Either one defined in the tuple of result.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[int, numpy.ndarray][source]
Parameters

x (Union[List[int], int]) -- random variable or list of random variables

Returns

evaluation of pmf at x

Return type

Union[int, numpy.ndarray]

skewness() float[source]
Returns

the skewness of Binomial Distribution.

var() float[source]
Returns

the variance of Binomial Distribution.

class source.discrete.Finite.Finite[source]

Bases: discrete._base.Base

Description:

Base class for probability tags.

class source.discrete.Finite.Geometric(p: float)[source]

Bases: source.discrete.Finite.Finite

This class contains functions for finding the probability mass function and cumulative distribution function for geometric distribution. We consider two definitions of the geometric distribution: one concerns itself to the number of X of Bernoulli trials needed to get one success, supported on the set {1,2,3,...}. The second one concerns with Y=X-1 of failures before the first success, supported on the set {0,1,2,3,...} 6 7.

\[\text{Geometric}_1(x;p) = (1-p)^{x-1}p\]
\[\text{Geometric}_2(x;p) = (1-p)^{x}p\]
Parameters
  • p (float) -- success probability for each trial. Where 0 <= p <= 1.

  • x (int) -- number of successes

References

6

Weisstein, Eric W. "Geometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GeometricDistribution.html

7

Wikipedia contributors. (2020, December 27). Geometric distribution. https://en.wikipedia.org/w/index.php?title=Geometric_distribution&oldid=996517676

Note: Geometric distribution can be configured based through _type parameter in pmf, cdf and moments of the distribution, including the std. The default type is _type='first', or \(\text{Geometric_1}(x;p)\).

cdf(x: Union[List[int], int], _type: str = 'first') Union[numpy.ndarray, float][source]
Parameters
  • x (Union[List[int], int, numpy.ndarray]) -- random variable(s)

  • _type (str, optional) -- optional specifier for modifying the type of Geometric distribution. Defaults to 'first'.

Raises
  • TypeError -- when random variable(s) are not of type int

  • ValueError -- when a _type parameter is not 'first' or second

Returns

evaluation of cdf at x

Return type

Union[numpy.ndarray, float]

keys() Dict[str, Union[float, int]][source]
Returns

Dictionary of Geometric distirbution moments. This includes standard deviation.

kurtosis() float[source]
Returns

kurtosis of Geometric distribution

Return type

float

mean(_type='first') float[source]
Parameters

_type (str, optional) -- modifies the type of Geometric distribution. Defaults to 'first'.

Raises

ValueError -- when _type is not 'first' or 'second'

Returns

mean of Geometric distribution

Return type

float

median(_type='first') int[source]
Parameters

_type (str, optional) -- modifies the type of Geometric distribution. Defaults to 'first'.

Raises

ValueError -- when _type is not 'first' or 'second'

Returns

median of Geometric distribution

Return type

int

mode(_type: str = 'first') int[source]
Parameters

_type (str, optional) -- modifies the type of Geometric distribution. Defaults to 'first'.

Raises

ValueError -- when _type is not 'first' or 'second'

Returns

mode of Geometric distribution

Return type

int

pmf(x: Union[List[int], int, numpy.ndarray], _type: str = 'first') Union[numpy.ndarray, float][source]
Parameters
  • x (Union[List[int], int, numpy.ndarray]) -- random variable(s)

  • _type (str, optional) -- optional specifier for modifying the type of Geometric distribution. Defaults to 'first'.

Raises
  • TypeError -- when random variable(s) are not of type int

  • ValueError -- when a _type parameter is not 'first' or second

Returns

evaluation of pmf at x

Return type

Union[numpy.ndarray, float]

skewness() float[source]
Returns

skewness of Geometric distribution

Return type

float

var() float[source]
Returns

variance of Geometric distribution

Return type

float

class source.discrete.Finite.Hypergeometric(N: int, K: int, n: int)[source]

Bases: source.discrete.Finite.Finite

This class contains methods concerning pmf and cdf evaluation of the hypergeometric distribution. Describes the probability if k successes (random draws for which the objsect drawn has specified deature) in n draws, without replacement, from a finite population size N that contains exactly K objects with that feature, wherein each draw is either a success or a failure 8 9 10.

\[\text{Hypergeometric}(x;N,K,n) = {{{K \choose x}{{N-K} \choose {n-x}}} \over {N \choose n}}\]
Parameters
  • N (int) -- population size \(N > 0\)

  • K (int) -- number of success states in the population \(K > 0\)

  • n (int) -- number of draws \(n > 0\)

  • k (int) -- number of observed successes \(x > 0\)

References

8

Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypergeometricDistribution.html

9

Wikipedia contributors. (2020, December 22). Hypergeometric distribution. https://en.wikipedia.org/w/index.php?title=Hypergeometric_distribution&oldid=995715954

10

Wolfram Research (2007). HypergeometricDistribution. https://reference.wolfram.com/language/ref/HypergeometricDistribution.html.

cdf()[source]
Parameters

x (List[int]) -- random variable or list of random variables

Returns

either cumulative density evaluation for some point or scatter plot of Hypergeometric distribution.

kurtosis() float[source]
Returns

kurtosis

Return type

float

mean() float[source]
Returns

the mean of Hypergeometric Distribution.

median() str[source]
Returns

the median of Hypergeometric Distribution. Currently unsupported or undefined.

mode() Tuple[int, int][source]
Returns

mode

Return type

Tuple[int, int]

pmf(x: Union[List, numpy.ndarray, float]) Union[numpy.ndarray, float][source]
Returns

evaluation of pmf

Return type

float

skewness() float[source]
Returns

skewness

Return type

float

summary() Dict[str, Union[float, str, Tuple[int, int]]][source]
Returns

Dictionary of Hypergeometric distirbution moments. This includes standard deviation.

var() float[source]
Returns

variance

Return type

float

class source.discrete.Finite.Uniform(a: int, b: int)[source]

Bases: source.discrete.Finite.Finite

This contains methods for finding the probability mass function and cumulative distribution function of Uniform distribution. Incudes scatter plot 11.

\[\text{Uniform} (a,b) = {\begin{cases}{\frac {1}{b-a}}&\mathrm {for} \ a\leq x\leq b,\ \[8pt]0&\mathrm {for} \ x<a\ \mathrm {or} \ x>b\end{cases}}\]
Parameters

data (int) -- sample size

Reference:
11

NIST/SEMATECH e-Handbook of Statistical Methods (2012). Uniform Distribution. Retrieved from http://www.itl.nist.gov/div898/handbook/, December 26, 2020.

cdf(x: Union[List[int], numpy.ndarray, int]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], np.ndarray, int]) -- data point(s)

Returns

evaluation of cdf at x

Return type

Union[float, np.ndarray]

kurtosis() float[source]
Returns

the kurtosis of Uniform Distribution.

mean() float[source]
Returns

the mean of Uniform Distribution.

median() float[source]
Returns

the median of Uniform Distribution.

mode() Tuple[int, int][source]
Returns

the mode of Uniform Distribution.

pmf(x: Union[List[int], numpy.ndarray, int]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], np.ndarray, int]) -- random variable(s)

Returns

evaluation of pmf at x

Return type

Union[float, np.ndarray]

skewness() int[source]
Returns

the skewness of Uniform Distribution.

summary() Dict[str, Union[float, Tuple[int, int]]][source]
Returns

Dictionary of Uniform distirbution moments. This includes standard deviation.

var() float[source]
Returns

the variance of Uniform Distribution.

source.discrete.Infinite module

class source.discrete.Infinite.Borel(mu: float)[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods concerning the Borel Distribution 12.

\[\text{Borel}(x;\mu) = \frac{e^{-\mu x}(\mu x)^{x-1}}{x!}\]
Parameters
  • mu (float) -- mu parameter \(\mu \in [0,1]\).

  • x (int) -- random variables

Reference:
12

Wikipedia Contributors (2021). Borel Distribution. https://en.wikipedia.org/wiki/Borel_distribution

mean() float[source]

Default implementation of the mean. Returns NotImplemented.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
std() float[source]

Default implementation of the standard deviation. Returns NotImplemented.

summary() Dict[str, float][source]
Returns

Dictionary of Borel distirbution moments. This includes standard deviation.

var() float[source]

Default implementation of the variance. Returns NotImplemented.

class source.discrete.Infinite.GaussKuzmin[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods concerning the Gauss-Kuzmin distribution 13 .

\[\text{GaussKuzmin}(x) = -\log_2 \Big[ 1- \frac{1}{(k+1)^2}\Big]\]
Parameters

x (int) -- random variables \(x \in (0,\inf]\)

Reference:
13

Wikipedia Contributors (2021). Gauss-Kuzmin distribution. https://en.wikipedia.org/wiki/Gauss%E2%80%93Kuzmin_distribution.

cdf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
entropy() float[source]

Reference: N. Blachman (1984). The Continued fraction as an information source (Corresp.). IEEE Transactions on Information Theor (Volume: 30, Issue: 4). DOI: 10.1109/TIT.1984.1056924.

kurtosis() str[source]

Default implementation of kurtosis. Returns NotImplemented.

mean() float[source]

Default implementation of the mean. Returns NotImplemented.

median() float[source]

Default implementation of the median. Returns NotImplemented.

mode() float[source]

Default implementation of the mode. Returns NotImplemented.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
skewness() str[source]

Default implementation of skewness. Returns NotImplemented.

std() float[source]

Default implementation of the standard deviation. Returns NotImplemented.

summary() Dict[str, Union[float, str]][source]
Returns

Dictionary of Poisson distirbution moments. This includes standard deviation.

var() float[source]

Default implementation of the variance. Returns NotImplemented.

class source.discrete.Infinite.Infinite[source]

Bases: discrete._base.Base

Description:

Base class for probability tags.

class source.discrete.Infinite.Logarithmic(p: float)[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods concerning Logarithmic distirbution 14.

\[\text{Logarithmic}(x;p) = \frac{-1}{\ln(1-p)} \ \frac{p^k}{k}\]
Parameters
  • p (float) -- p parameter

  • x (int) -- random variable

Reference:
14

Wikipedia Contributors (2020). Logarithmic distirbution. https://en.wikipedia.org/wiki/Logarithmic_distribution.

cdf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
mean() float[source]

Default implementation of the mean. Returns NotImplemented.

mode() float[source]

Default implementation of the mode. Returns NotImplemented.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
std() float[source]

Default implementation of the standard deviation. Returns NotImplemented.

summary() Dict[str, float][source]
Returns

Dictionary of Logarithmic distirbution moments. This includes standard deviation.

var() float[source]

Default implementation of the variance. Returns NotImplemented.

class source.discrete.Infinite.Poisson(λ: float)[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods for evaluating some properties of the poisson distribution. As lambda increases to sufficiently large values, the normal distribution (λ, λ) may be used to approximate the Poisson distribution 15 16 17.

Use the Poisson distribution to describe the number of times an event occurs in a finite observation space.

\[\text{Poisson}(x;\lambda) = \frac{\lambda ^{x} e^{- \lambda}}{x!}\]
Parameters
  • λ (float) -- expected rate if occurrences.

  • x (int) -- number of occurrences.

References

15

Minitab (2019). Poisson Distribution. https://bityl.co/4uYc

16

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html.

17

Wikipedia contributors. (2020, December 16). Poisson distribution. https://en.wikipedia.org/w/index.php?title=Poisson_distribution&oldid=994605766

cdf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], int, np.ndarray]) -- data point(s) of interest

Raises
  • TypeError -- when types are not of type integer

  • ValueError -- when x is les than 0

Returns

evaluation of cdf at x

Return type

Union[float, np.ndarray]

kurtosis() float[source]
Returns

the kurtosis of Poisson Distribution.

mean() float[source]
Returns

the mean of Poisson Distribution.

median() float[source]
Returns

the median of Poisson Distribution.

mode() Tuple[int, int][source]
Returns

the mode of Poisson Distribution.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], int, np.ndarray]) -- random variable(s)

Raises
  • TypeError -- when types not of type integer

  • ValueError -- when x is less than 0

Returns

evaluation of pmf at x

Return type

Union[float, np.ndarray]

skewness() float[source]
Returns

the skewness of Poisson Distribution.

summary() Dict[str, Union[float, Tuple[int, int]]][source]
Returns

Dictionary of Poisson distirbution moments. This includes standard deviation.

var() float[source]
Returns

the variance of Poisson Distribution.

class source.discrete.Infinite.YulleSimon(shape: float)[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods concerning the Yulle-Simon Distribution 18.

\[\text{YulleSimon}(x;\rho) = \rho\text{B}(x,\rho+1)\]
Parameters
  • shape (float) -- shape parameter \(\rho > 0\)

  • x (float) -- random variables

Reference:
18

Wikipedia Contributors (2021). Yulle-Simon distribution. https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution.

cdf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
kurtosis() Union[float, str][source]

Default implementation of kurtosis. Returns NotImplemented.

mean() Union[float, str][source]

Default implementation of the mean. Returns NotImplemented.

mode() float[source]

Default implementation of the mode. Returns NotImplemented.

pmf(x: Union[List[int], int, numpy.ndarray]) Union[float, numpy.ndarray][source]
skewness() Union[float, str][source]

Default implementation of skewness. Returns NotImplemented.

std() Union[float, str][source]

Default implementation of the standard deviation. Returns NotImplemented.

summary() Dict[str, Union[float, str]][source]
Returns

Dictionary of Borel distirbution moments. This includes standard deviation.

var() Union[float, str][source]

Default implementation of the variance. Returns NotImplemented.

class source.discrete.Infinite.Zeta(s: float)[source]

Bases: source.discrete.Infinite.Infinite

This class contains methods concerning the Zeta Distribution 19 20.

\[\text{Zeta}(x;s) =\frac{\frac{1}{x^s}}{\zeta(s)}\]
Parameters
  • s (-) -- main parameter

  • x (-) -- support parameter

References

19

Wikipedia contributors. (2020, November 6). Zeta distribution. In Wikipedia, The Free Encyclopedia. Retrieved 10:24, December 26, 2020, from https://en.wikipedia.org/w/index.php?title=Zeta_distribution&oldid=987351423

20

The Zeta Distribution. (2021, February 3). https://stats.libretexts.org/@go/page/10473

cdf(x: List[int]) Union[int, float, List[int]][source]
Parameters

x (List[int]) -- random variables.

Returns

evaluation of cdf at x. Currently NotImplemented

Return type

Union[int, float, List[int]]

kurtosis() Union[str, float][source]
Returns

the kurtosis of Zeta Distribution.

mean() Union[str, float][source]
Returns

mean of Zeta distribution

median() str[source]
Returns

undefined.

mode() int[source]
Returns

mode of Zeta distribution

pmf(x: Union[List[int], numpy.ndarray, int]) Union[float, numpy.ndarray][source]
Parameters

x (Union[List[int], np.ndarray, int]) -- random variable(s)

Raises

TypeError -- when types are not of type integer

Returns

evaluation of pmf at x

Return type

Union[float, np.ndarray]

skewness() Union[str, float][source]
Returns

the skewness of Zeta Distribution.

std() Union[str, float][source]
Returns

the standard deviation of Zeta Distribution. Returns undefined if variance is undefined.

summary() Dict[str, Union[float, int, str]][source]
Returns

Dictionary of Zeta distirbution moments. This includes standard deviation.

var() Union[str, float][source]
Returns

the variance of Zeta Distribution. Returns undefined if s <= 3.

Module contents