source.univariate package¶
This package a collection of continuous univariate distributions.
source.univariate.BoundedInterval module¶
- class source.univariate.BoundedInterval.Arcsine[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Arcsine Distirbution 1.
\[\text{Arcsine}(x)={\frac{1}{\pi \sqrt{x(1-x)}}}\]- Parameters
x (float) -- random variable between 0 and 1
- Reference:
- 1
Wikipedia contributors. (2020, October 30). Arcsine distribution. https://en.wikipedia.org/w/index.php?title=Arcsine_distribution&oldid=986131091
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point
- Raises
ValueError -- when there exist a value less than 0 or greater than 1
TypeError -- when parameter is not of type float | List[float] | numpy.ndarray
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variables
- Raises
ValueError -- when there exist a value less than 0 or greater than 1
TypeError -- when parameter is not of type float | List[float] | numpy.ndarray
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Bates(a: float, b: float, n: int, randvar: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Bates Distirbution. Also referred to as the regular mean distribution.
Note that the Bates distribution is a probability distribution of the mean of a number of statistically indipendent uniformly distirbuted random variables on the unit interval. This is often confused with the Irwin-Hall distribution which is the distribution of the sum (not the mean) of n independent random variables. The two distributions are simply versions of each other as they only differ in scale 2.
- Parameters
a (float) -- lower bound parameter
b (float) -- upper bound parameter where b > a
n (int) -- where n >= 1
randvar (float) -- random variable where a <= x <= b
- Reference:
- 2
Wikipedia contributors. (2021, January 8). Bates distribution. https://en.wikipedia.org/w/index.php?title=Bates_distribution&oldid=999042206
- cdf(x: Optional[Union[List[float], numpy.ndarray]] = None) Union[float, numpy.ndarray] [source]¶
- Parameters
x (List[float], numpy.ndarray) -- random variable or list of random variables
- Returns
either cumulative distribution evaluation for some point or plot of Bates distribution.
- class source.univariate.BoundedInterval.Bernoulli(shape: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Continuous Bernoulli Distirbution. The continuous Bernoulli distribution arises in deep learning and computer vision, specifically in the context of variational autoencoders, for modeling the pixel intensities of natural images 3 4 5 6.
\[C(\lambda)\lambda^{x}(1-\lambda)^{1-x}\]where
\[C(\lambda)= \begin{cases}2&{\text{if }\lambda =\frac {1}{2}} \ \frac{2\tanh^{-1}(1-2\lambda )}{1-2\lambda }&{\text{ otherwise}}\end{cases}\]- Parameters
shape (float) -- parameter
x (float) -- random variable where x is between 0 and 1
- Reference:
- 3
Wikipedia contributors. (2020, November 2). Continuous Bernoulli distribution. https://en.wikipedia.org/w/index.php?title=Continuous_Bernoulli_distribution&oldid=986761458
- 4
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- 5
Kingma, D. P., & Welling, M. (2014, April). Stochastic gradient VB and the variational auto-encoder.In Second International Conference on Learning Representations, ICLR (Vol. 19).
- 6
Ganem, G & Cunningham, J.P. (2019). The continouous Bernoulli: fixing a pervasive error in variational autoencoders. https://arxiv.org/pdf/1907.06845.pdf
- cdf(x: Union[List[float], numpy.ndarray]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value <= 0 or >= 1
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value less than 0 or greater than 1
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Beta(alpha: float, beta: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Beta Distirbution 7.
\[\text{Beta}(x; \alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\text{B}(\alpha, \beta)}\]- Parameters
alpha (float) -- shape parameter where alpha > 0
beta (float) -- shape parameter where beta > 0
x (float) -- random variable where x is between 0 and 1
- Reference:
- 7
Wikipedia contributors. (2021, January 8). Beta distribution. https://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=999043368
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Beta distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value x <= 0 or x <= 1
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.BetaRectangular(alpha: float, beta: float, theta: float, min: float, max: float, randvar: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Beta-rectangular Distirbution. Thus it is a bounded distribution that allows for outliers to have a greater chance of occurring than does the beta distribution 8 .
\[\begin{split}\text{BetaRectangulat}(x,\alpha ,\beta ,\theta )={\begin{cases}{\frac{\theta \Gamma (\alpha +\beta )}{\Gamma (\alpha )\Gamma (\beta )}}{\frac{(x-a)^{{\alpha -1}}(b-x)^{{\beta -1}}}{(b-a)^{{\alpha +\beta +1}}}}+{\frac{1-\theta }{b-a}}&{\mathrm{for}}\ a\leq x\leq b,\\[8pt]0&{\mathrm{for}}\ x<a\{\mathrm{or}}\ x>b\end{cases}}\end{split}\]- Parameters
alpha (float) -- shape parameter
beta (float) -- shape parameter
theta (float) -- mixture parameter where 0 < theta < 1
min (float) -- lower bound
max (float) -- upper bound
x (float) -- random variable where alpha <= x<= beta
- Reference:
- 8
Wikipedia contributors. (2020, December 7). Beta rectangular distribution. https://en.wikipedia.org/w/index.php?title=Beta_rectangular_distribution&oldid=992814814
- class source.univariate.BoundedInterval.BoundedInterval[source]¶
Bases:
univariate._base.Base
- Description:
Base class for probability tags.
- class source.univariate.BoundedInterval.Kumaraswamy(a: float, b: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning the Kumaraswamy distribution 9 .
\[\text{Kumaraswamy}(x;a,b) = abx^{a-1}(1-x^a)^{b-1}\]- Parameters
a (float) -- a parameter \(a > 0\)
b (float) -- b parameter \(b > 0\)
x (float) -- random variables \(x \in (0,1)\)
- Reference:
- 9
Wikipedia Contributors (2021). Kumaraswamy distribution. https://en.wikipedia.org/wiki/Kumaraswamy_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value of x <= 0 or x >= 1
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x <= 0 or x>= 1
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.LogitNormal(sq_scale: float, location: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Logit Normal Distirbution 10.
\[\text{LogitNormal}(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2\pi} \cdot x(1-x)} \exp{\Big(-\frac{(logit(x)-\mu)^2}{2\sigma^2} \Big)}\]- Parameters
sq_scale (float) -- squared scale parameter
location (float) -- location parameter
x (float) -- random variable where x is between 0 and 1
- Reference:
- 10
Wikipedia contributors. (2020, December 9). Logit-normal distribution. https://en.wikipedia.org/w/index.php?title=Logit-normal_distribution&oldid=993237113
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() str [source]¶
Returns: differential entropy of Logit Normal distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value below 0 and greater than 1
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.RaisedCosine(mu: float, s: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning the Raised Cosine distribution 11.
\[\text{RaisedCosine}(x;\mu, s) = \frac{1}{2s} \Big[ 1 + \cos \Big( \frac{x-\mu}{s} \pi \Big) \Big]\]- Parameters
mu (float) -- mu parameter \(\mu \in \mathbb{R}\)
s (float) -- s parameter \(s > 0\)
x (float) -- random variables
References
- 11
Wikipedia Contributors (2020). Raised cosine distribution. https://en.wikipedia.org/wiki/Raised_cosine_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x < mu - s or x > mu + s
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Reciprocal(a: float, b: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Reciprocal distribution 12.
\[\text{Reciprocal}(x;a,b) = \frac{1}{x \ln \Big( \frac{b}{a}\Big)}\]- Parameters
a (float) -- a parameter \(a > 0\)
b (float) -- b prameter \(b > 0\)
x (float) -- random variable
- Reference:
- 12
Wikipedia Contributors (2021). Reciprocal distribution. https://en.wikipedia.org/wiki/Reciprocal_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Trapezoidal(a: float, b: float, c: float, d: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Trapezoidal Distirbution 13.
- Parameters
a (float) -- lower bound parameter where a < d
b (float) -- level start parameter where a <= b < c
c (float) -- level end parameter where b < c <= d
d (float) -- upper bound parameter where c <= d
randvar (float) -- random variable where a <= x <= d
- Reference:
- 13
Wikipedia contributors. (2020, April 11). Trapezoidal distribution. https://en.wikipedia.org/w/index.php?title=Trapezoidal_distribution&oldid=950241388
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Triangular(a: float, b: float, c: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning Triangular Distirbution 14.
- Parameters
a (float) -- lower limit parameter
b (float) -- upper limit parameter where a < b
c (float) -- mode parameter where a <= c <= b
randvar (float) -- random variable where a <= x <= b
- Reference:
- 14
Wikipedia contributors. (2020, December 19). Triangular distribution. https://en.wikipedia.org/w/index.php?title=Triangular_distribution&oldid=995101682
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation fo cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Triangular distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of a > x or x > b
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.UQuadratic(a: float, b: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning U-Quadratic Distribution 15.
\[\text{UQuadratic}(x;a,b) = a \Big(x- \frac{a+b}{2}\Big)^2\]- Parameters
a (float) -- parameter a
b (float) -- parameter b
x (float) -- random variables \(x \in [a,b]\)
- Reference:
- 15
Wikipedia Contributors (2021). U-quadratic distribution. https://en.wikipedia.org/wiki/U-quadratic_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value of x < a or x > b
- Returns
cdf evaluation at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x less than a or greater than b
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.Uniform(a: float, b: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning the Continuous Uniform Distribution 16.
\[\text{Uniform}(x;a,b) = \frac{1}{b-a}\]- Parameters
a (float) -- lower limit of the distribution
b (float) -- upper limit of the distribution where b > a
- Referene:
- 16
Weisstein, Eric W. "Uniform Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/UniformDistribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: entropy of uniform Distirbution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- mode() Tuple[float, float] [source]¶
Returns: Mode of the Uniform distribution.
Note that the mode is any value in (a,b)
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evauation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.BoundedInterval.WignerSemiCircle(radius: float)[source]¶
Bases:
source.univariate.BoundedInterval.BoundedInterval
This class contains methods concerning the Wigner Semi Circle 17.
\[\text{WignerSemiCircle}(x;r) = \frac{2}{ \pi r^2} \sqrt{r^2 - x^2}\]- Parameters
radius (float) -- raduis parameter \(r > 0\)
x (float) -- random variable
- Reference:
- 17
Wikipedia Contributors (2021). Wigner semicircle distribution. https://en.wikipedia.org/wiki/Wigner_semicircle_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value of x < -rad or x > rad
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variables
- Raises
ValueError -- when there exist a value of x < -rad or x > rad
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
source.univariate.Infinite module¶
- class source.univariate.Infinite.AssymetricLaplace(loc: float, scale: float, asym: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Assymetric Laplace Ditribution 18.
\[{\displaystyle \text{AssymetricLaplace}(x;m,\lambda ,\kappa )={\]rac {lambda }{kappa +1/kappa }}{begin{cases}exp left((lambda /kappa )(x-m)right)&{text{if }}x<m[4pt]exp(-lambda kappa (x-m))&{text{if }}xgeq mend{cases}}}
- Args:
loc (float): location parameter \(m\) scale (float): scale parameter \(\lambda > 0\) asym (float): assymetry parameter \(\kappa > 0\) x (float): random variable
- Reference:
- 18
Wikipedia Contributors (2020). Assymetric Laplace Distribution. https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.Cauchy(loc: float, scale: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning the Cauchy Distribution 19 20.
\[\text{Cauchy}(x;loc, scale) = \frac{1}{\pi \cdot scale \big[ 1 + \big( \frac{x-loc}{scale} \big)^2 \big]}\]- Parameters
loc (float) -- pertains to the loc parameter or median
scale (float) -- pertains to the scale parameter where scale > 0
x (float) -- random variable
References
- 19
Wikipedia contributors. (2020, November 29). Cauchy distribution. https://en.wikipedia.org/w/index.php?title=Cauchy_distribution&oldid=991234690
- 20
Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyDistribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Cauchy distribution
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.FisherZ(df1: float, df2: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning Fisher's z-Distribution 21 22 23.
\[\text{Fisher}(x;d_1, d_2) = \frac{2d_2^{d_1/2} d_2^{d_2/2}}{\text{B}\Big(\frac{d_1}{2}, \frac{d_2}{2}\Big)} \frac{e^{d_1 x}}{(d_1 e^{2x} + d_2)^{(d_1+d_2)/2}}\]- Parameters
df1 (float) -- degrees of freedom (\(d_1 > 0\)).
df2 (float) -- degrees of freedom (\(d_2 > 0\)).
x (float) -- random variable.
Note: Fisher's z-distribution is the statistical distribution of half the log of an F-distribution variate: z = 1/2*log(F)
- Reference:
- 21
Wikipedia contributors. (2020, December 15). Fisher's z-distribution. https://en.wikipedia.org/w/index.php?title=Fisher%27s_z-distribution&oldid=994427156.
- 22
Wolfram Research (2010), FisherZDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/FisherZDistribution.html (updated 2016).
- 23
Wolfram Alpha (2021). Fisher Distribution. https://www.wolframalpha.com/input/?i=Fisher+distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], np.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, np.ndarray]
- class source.univariate.Infinite.GH(lmbda: float, alpha: float, asym: float, scale: float, loc: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Hyperbolic Distribution V1 24.
- Parameters
alpha (float) -- alpha parameter \(\alpha\)
lmbda (float) -- lambda parameter \(\lambda\)
asym (float) -- asymmetry parameter \(\beta\)
scale (float) -- scale parameter \(\delta\)
loc (float) -- location parameter \(\mu\)
x (float) -- random variable
- class source.univariate.Infinite.GNV1(loc: float, scale: float, shape: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V1 25.
\[\text{GNV1}(x; \mu, \alpha, \beta) = \frac{\beta}{2 \alpha \Gamma(1/\beta)} e^{(- |x-\mu|/ \alpha)^\beta}\]- Parameters
loc (float) -- location parameter \(\mu\)
scale (float) -- scale parameter \(\alpha\)
shape (float) -- shape parameter \(\beta\)
x (float) -- random variable
- Reference:
- 24
Wikipedia Contributors (2021). Generalized normal distribution. https://en.wikipedia.org/wiki/Generalized_normal_distribution.
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.GNV2(loc: float, scale: float, shape: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V2 26.
- Parameters
loc (float) -- location parameter \(\xi\)
scale (float) -- scale parameter \(\alpha\)
shape (float) -- shape parameter \(\beta\)
x (float) -- random variable
- class source.univariate.Infinite.Gaussian(mean: float = 0, stdev: float = 1)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning the Gaussian Distribution 27 28.
\[\text{Gaussian}(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\big( \frac{x-\mu}{\sigma}\big)^2}\]- Parameters
mean (float) -- mean of the distribution (\(\mu\))
std (float) -- standard deviation (\(\sigma\)) of the distribution where std > 0
x (float) -- random variable
References
- 25
Wikipedia contributors. (2020, December 19). Gaussian distribution. https://en.wikipedia.org/w/index.php?title=Gaussian_distribution&oldid=995237372
- 26
Weisstein, Eric W. "Gaussian Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianDistribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Gaussian distribution
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.HyperbolicSecant(loc: float, scale: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Hyperbolic Secant 29 30 .
\[\text{HyperbolicSecant}(x; \mu, \sigma) = \frac{\text{sech} \Big( \frac{\pi (x - \mu)}{2 \sigma} \Big)}{2 \sigma}\]- Parameters
loc (float) -- location parameter \(\mu\)
scale (float) -- scale parameter \(\sigma > 0\)
x (float) -- random variable
- Referneces:
- 27
Seigrist, K. (n.d.) The Hyperbolic Secant Distribution. https://www.randomservices.org/random/special/HyperbolicSecant.html.
- 28
Wolfram Alpha(2021). Hyperbolic Secant. https://www.wolframalpha.com/input/?i=hyberbolic+secant+distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.Infinite[source]¶
Bases:
univariate._base.Base
- Description:
Base class for probability tags.
- class source.univariate.Infinite.JohnsonSU(gamma: float, xi: float, delta: float, lmbda: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V1 31.
\[\text{JohnsonSU}(x;\gamma,\xi,\delta,\lambda) = \frac{\delta}{\lambda \sqrt{2\pi} \cdot \sqrt{1+\Big(\frac{x-\xi}{\lambda}\Big)}} e^{-0.5\Big(\gamma + \delta \sinh^-1 \Big(\frac{x-\xi}{\lambda}\Big) \Big)^2}\]- Parameters
gamma (float) -- gamma parameter \(\gamma\)
xi (float) -- xi parameter \(\xi\)
delta (float) -- delta parameter \(\delta > 0\)
lamlda (float) -- lambda parameter \(\lambda > 0\)
x (float) -- random variable
- Reference:
- 29
Wikipedia Contributors (2021). Johnson's SU-distribution. https://en.wikipedia.org/wiki/Johnson.
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.Landau(scale: float, loc: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V1 32.
- Parameters
scale (float) -- scale parameter \(c > 0\)
loc (float) -- location parameter \(\mu\)
x (float) -- random variable
- class source.univariate.Infinite.Laplace(loc: float, scale: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning Laplace Distirbution 33 34.
\[\text{Laplace}(x;\mu, b) = \frac{1}{2b} \exp{- \frac{|x - \mu |}{b}}\]- Parameters
loc (float) -- loc parameter (\(\mu\))
scale (float) -- scale parameter (\(b > 0\))
x (float) -- random variable
- Reference:
- 30
Wikipedia contributors. (2020, December 21). Laplace distribution. https://en.wikipedia.org/w/index.php?title=Laplace_distribution&oldid=995563221
- 31
Wolfram Research (2007), LaplaceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LaplaceDistribution.html (updated 2016).
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Laplace distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.Logistic(location: float, scale: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning Logistic Distirbution 35 36.
\[\text{Logistic}(x;\mu,s) = \frac{\exp{(-(x-\mu)/s)}} {s(1+\exp(-(x-\mu)/s)^2)}\]- Parameters
location (float) -- location parameter (\(\mu\))
scale (float) -- scale parameter (\(s\)) x > 0
x (float) -- random variable
- Reference:
- 32
Wikipedia contributors. (2020, December 12). Logistic distribution. https://en.wikipedia.org/w/index.php?title=Logistic_distribution&oldid=993793195
- 33
Wolfram Research (2007), LogisticDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LogisticDistribution.html (updated 2016).
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Logistic distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.SkewNormal(loc: float, scale: float, shape: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V1 37 38.
\[\text{SkewNormal}(x;\xi,\omega,\alpha) = \frac{e^{\frac{-(x-\xi)^2}{2 \omega^2} \text{erfc} \Big( - \frac{a(x-\xi)}{\sqrt{2} \omega} \Big) }}{ \sqrt{2\pi} \omega}\]- Parameters
loc (float) -- location parameter \(\xi\)
scale (float) -- scale parameter \(\omega\)
shape (float) -- shape parameter \(\alpha\)
x (float) -- random variable
- Reference:
- 34
Wikipedia Contributors (2021). Skew Normal Distribution. https://en.wikipedia.org/wiki/Skew_normal_distribution.
- 35
Wolfram Research (2010), SkewNormalDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SkewNormalDistribution.html (updated 2016).
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variables
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.Slash(loc: float, scale: float, shape: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Slash Distribution 39.
\[ext{Slash}(x) = {\displaystyle {egin{cases}{\]rac { arphi (0)- arphi (x)}{x^{2}}}&x eq 0{ rac {1}{2{sqrt {2pi }}}}&x=0\end{cases}}}
- Args:
x (float): random variable
- Reference:
- 36
Wikipedia Contributors (2021). Slash Distribution. https://en.wikipedia.org/wiki/Slash_distribution
- class source.univariate.Infinite.T(df: int)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains implementation of the Student's Distribution for calculating the probablity density function and cumulative distribution function. Additionally, a t-table __generator is also provided by p-value method. Note that the implementation of T(Student's) distribution is defined by beta-functions 40 41.
\[\text{T}(x;\nu) = \frac{1}{\sqrt{\nu}\text{B}\Big(\frac{1}{2}, \frac{\nu}{2}\Big)} \Big(1 + \frac{t^2}{\nu}\Big) ^{-\frac{\nu+1}{2}}\]\[\begin{split}\text{T}(x;\nu) = \frac{\Gamma\Big( \frac{\nu+1}{2} \Big)}{\sqrt{\nu\pi} \Gamma{\Big( \frac{\nu}{2} \Big)}} \Big(1 + \frac{x^2}{\nu}\Big) ^{- \frac{v+1}{2}} \\\end{split}\]- Parameters
df (int) -- degrees of freedom (\(\nu\)) where df > 0
x (float) -- random variable
References
- 37
Kruschke JK (2015). Doing Bayesian Data Analysis (2nd ed.). Academic Press. ISBN 9780124058880. OCLC 959632184.
- 38
Weisstein, Eric W. "Student's t-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Studentst-Distribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of T-distribution
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- mean() Union[float, str] [source]¶
Mean of the T-distribution. :returns: 0 for df > 1, otherwise Indeterminate.
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.Infinite.VarianceGamma(loc: float, scale: float, shape: float)[source]¶
Bases:
source.univariate.Infinite.Infinite
This class contains methods concerning to Generalized Normal Distribution V1 42.
- Parameters
loc (float) -- location parameter \(\mu\)
scale (float) -- scale parameter \(\alpha\)
shape (float) -- shape parameter \(\beta\)
x (float) -- random variable
source.univariate.SemiInfinite module¶
- class source.univariate.SemiInfinite.Benini(shape_a: float, shape_b: float, scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the Benini Distribution 43 44.
\[\text{Benini}(x;\alpha,\beta,\sigma) = e^{\alpha \log(x/\alpha) - \beta[\log(x/\sigma)]^2} \Big(\frac{\alpha}{x} + \frac{2 \beta \log(x/\sigma)}{x} \Big)\]- Parameters
shape_a (float) -- shape parameter \(\alpha > 0\)
shape_b (float) -- shape parameter \(\beta > 0\)
scale (float) -- scale parameter \(\sigma > 0\)
x (float) -- random variables
References
- 39
Wikipedia Contributors (2021). Benini Distribution. https://en.wikipedia.org/wiki/Benini_distribution.
- 40
Wolfram Research (2010), BeniniDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BeniniDistribution.html (updated 2016).
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) or interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x <= sigma
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- summary() Dict[str, float] [source]¶
- Returns
Dictionary of Benini distirbution moments. This includes standard deviation.
- var() float [source]¶
Returns: Variance of Benini distribution Reference: Wolfram (2021). BeniniDistribution. https://reference.wolfram.com/language/ref/BeniniDistribution.html.
- class source.univariate.SemiInfinite.BetaPrime(alpha: float, beta: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Beta prime Distirbution 45 .
\[\text{BetaPrime}(x;\alpha,\beta) = \frac{x^{\alpha -1}(1+x)^{-\alpha -\beta}}{\text{B}(\alpha ,\beta )}\]- Parameters
alpha (float) -- shape parameter where alpha > 0
beta (float) -- shape parameter where beta > 0
x (float) -- random variable where x >= 0
- Reference:
- 41
Wikipedia contributors. (2020, October 8). Beta prime distribution. https://en.wikipedia.org/w/index.php?title=Beta_prime_distribution&oldid=982458594
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value of x less than 0
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy()[source]¶
Returns: differential entropy of the Beta prime distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x less than 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.BurrXII(c: float, k: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x <= 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Chi(df: int)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the Chi distribution 46 47.
\[\text{Chi}(x; k) = \frac{2^{1-k/2} e^{-\frac{x^2}{2}} x^{k-1}}{\Gamma \Big(\frac{k}{2} \Big)}\]- Parameters
df (int) -- degrees of freedom where df > 0
x (float) -- random variable
References
- 42
Weisstein, Eric W. "Chi Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChiDistribution.html
- 43
Wikipedia contributors. (2020, October 16). Chi distribution. https://en.wikipedia.org/w/index.php?title=Chi_distribution&oldid=983750392
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of Chi distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], np.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x <= 0
- Returns
evaluation of pdf at x
- Return type
Union[float, np.ndarray]
- class source.univariate.SemiInfinite.ChiSquare(df: int)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the Chi-square distribution 48 49 50.
\[\text{ChiSquare}(x;k) = \frac{2^{-k/2} e^{-x/2} x^{k/2 - 1}}{\Gamma\Big(\frac{k}{2} \Big)}\]- Parameters
df (int) -- degrees of freedom (\(k\)) where df > 0
x (float) -- random variable.
References
- 44
Wolfram Alpha (2020). Chi-squared distribution. https://www.wolframalpha.com/input/?i=chi+squared+distribution.
- 45
Weisstein, Eric W. "Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Chi-SquaredDistribution.html
- 46
Wikipedia contributors. (2020, December 13). Chi-square distribution. https://en.wikipedia.org/w/index.php?title=Chi-square_distribution&oldid=994056539
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a value of x less than 0
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of Chi-square distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a vaue less than 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Dagum(shape_p: float, shape_a: float, scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Dagum Distribution 51.
\[\text{Dagum}(x;a,p,b) = \frac{ap}{x} \Bigg(\frac{\frac{x}{b}^{ap}}{\Big(\frac{x}{b}^a + 1\Big)^{p+1}}\Bigg)\]- Parameters
shape_p (float) -- shape parameter \(p > 0\)
shape_a (float) -- shape parameter \(a > 0\)
scale (float) -- scale parameter \(b > 0\)
x (float) -- random variables
References
- 47
Wikipedia Contributors (2021). Dagum Distribution. https://en.wikipedia.org/wiki/Dagum_distribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x <= 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Erlang(shape: int, rate: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Erlang Distirbution 52 53 54.
\[\text{Erlang}(x; k, \lambda) = \frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{\Gamma(k)}\]- Parameters
shape (int) -- shape parameter (\(k\)) where shape > 0
rate (float) -- rate parameter (\(\lambda\)) where rate >= 0
x (float) -- random variable where x >= 0
- Reference:
- 48
Wolfram Alpha (2021). Erlang Distribution. https://www.wolframalpha.com/input/?i=erlang+distribution.
- 49
Wikipedia contributors. (2021, January 6). Erlang distribution. https://en.wikipedia.org/w/index.php?title=Erlang_distribution&oldid=998655107
- 50
Weisstein, Eric W. "Erlang Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ErlangDistribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Raises
ValueError -- when there exist a data value of x that is less than 0 or greater than 1
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Erlang distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x that is less than 0 or greater than 1
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Exponential(rate: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contans methods for evaluating Exponential Distirbution 55 56 57.
\[\text{Exponential}(x;\lambda) = \lambda e^{-\lambda x}\]- Parameters
rate (-) -- rate parameter (\(\lambda\)) where rate > 0
x (-) -- random variable where x > 0
References
- 51
Wolfram Alpha (2021). Exponential Distirbution. https://www.wolframalpha.com/input/?i=exponential+distribution.
- 52
Weisstein, Eric W. "Exponential Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExponentialDistribution.html
- 53
Wikipedia contributors. (2020, December 17). Exponential distribution. https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=994779060
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entorpy() float [source]¶
Returns: differential entropy of the Exponential distribution
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.F(df1: int, df2: int)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the F-distribution 58 59 60.
\[\text{F}(x;d_1, d_2) = \frac{1}{\text{B}(d_1/2,d_2/2)} \Big( \frac{d_1}{d_2} \Big)^{d_1/2} x^{d_1/2 - 1} \Big(1 + \frac{d_1}{d_2}x\Big) ^{-(d_1+d_2)/2}\]- Parameters
df1 (int) -- first degrees of freedom where df1 > 0
df2 (int) -- second degrees of freedom where df2 > 0
x (float) -- random variable where x > 0
References
- 54
Mood, Alexander; Franklin A. Graybill; Duane C. Boes (1974). Introduction to the Theory of Statistics (Third ed.). McGraw-Hill. pp. 246–249. ISBN 0-07-042864-6.
- 55
Weisstein, Eric W. "F-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/F-Distribution.html
- 56
NIST SemaTech (n.d.). F-Distribution. Retrived from https://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s)
- Returns
evaluates cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() Union[float, int] [source]¶
Returns: differential entropy of F-distribution.
Reference: Lazo, A.V.; Rathie, P. (1978). "On the entropy of continuous probability distributions". IEEE Transactions on Information Theory
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value such that x < 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Gamma(shape: float, b: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning a variant of Gamma distribution 61.
\[\text{Gamma}(x;a,b) = \frac{1}{b^a \Gamma(a)} \ x^{a-1} e^{\frac{-x}{b}}\]- Parameters
shape (float) -- shape parameter (\(a\)) where shape > 0
scale (float) -- scale parameter (\(b\)) where scale > 0
x (float) -- random variable where x > 0
References
- 57
Matlab(2020). Gamma Distribution. https://www.mathworks.com/help/stats/gamma-distribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Gamma distribution
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x that is less than 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Gumbell(location: float, scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Gumbel Distirbution 62.
\[\text{Gumbel}(x;\mu,\beta) = \frac{1}{\beta} \exp{-\Big( \frac{x-\mu}{\beta} + \exp{ \frac{x-\mu}{\beta}} \Big)}\]- Parameters
location (float) -- location parameter (\(\mu\))
scale (float) -- scale parameter (\(\beta\)) where scale > 0
x (float) -- random variable
- Reference:
- 58
Wikipedia contributors. (2020, November 26). Gumbel distribution. https://en.wikipedia.org/w/index.php?title=Gumbel_distribution&oldid=990718796
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.LogNormal(mean: float, std: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the Log Normal Distribution 63 64.
\[\text{LogNormal}(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp{\Big( - \frac{(\ln x - \mu)^2}{2\sigma^2} \Big)}\]- Parameters
mean (float) -- mean parameter (\(\mu\))
std (float) -- standard deviation (\(\sigma\)) where std > 0
x (float) -- random variable where x >= 0
References
- 59
Weisstein, Eric W. "Log Normal Distribution." From MathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/LogNormalDistribution.html
- 60
Wikipedia contributors. (2020, December 18). Log-normal distribution. https://en.wikipedia.org/w/index.php?title=Log-normal_distribution&oldid=994919804
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the log normal distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x < 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.MaxwellBoltzmann(a: int)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Maxwell-Boltzmann Distirbution 65 66.
\[\text{MaxwellBoltzmann}(x;a) = \sqrt{\frac{2}{\pi}} \frac{x^2 \exp{-x^2/(2a^2)}}{a^3}\]- Parameters
a (int) -- parameter where a > 0
x (float) -- random variable where x >= 0
- Reference:
- 61
Wikipedia contributors. (2021, January 12). Maxwell–Boltzmann distribution. https://en.wikipedia.org/w/index.php?title=Maxwell%E2%80%93Boltzmann_distribution&oldid=999883013
- 62
Wolfram Alpha (2021). Maxwell Distribution. https://www.wolframalpha.com/input/?i=maxwelldistribution.
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) or interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Maxwell-Boltzmann distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x less than 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Pareto(shape: float, scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning the Pareto Distribution Type 1 67 68.
\[\text{Pareto}(x;x_m, a) = \frac{a x_m^a}{x^{a+1}}\]- Parameters
scale (float) -- scale parameter (\(x_m\)) where scale > 0
shape (float) -- shape parameter (\(a\)) where shape > 0
x (float) -- random variable where shape <= x
References
- 63
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 978-0-89974-012-6.
- 64
Wikipedia contributors. (2020, December 1). Pareto distribution. https://en.wikipedia.org/w/index.php?title=Pareto_distribution&oldid=991727349
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Pareto distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there is a case that a random variable is greater than the value of shape parameter
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.Rayleigh(scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Rayleigh Distirbution 69 70 [#]_.
\[\text{Rayleigh}(x;\sigma) = \frac{x}{\sigma^2} \exp{-(x^2/(2\sigma^2))}\]- Parameters
scale (float) -- scale parameter (\(\sigma\)) where scale > 0
x (float) -- random variable where x >= 0
Reference:
- 65
Wolfram Alpha (2021). Rayleigh distribution. https://www.wolframalpha.com/input/?i=rayleigh+distribution.
- 66
Wikipedia contributors. (2020, December 30). Rayleigh distribution. https://en.wikipedia.org/w/index.php?title=Rayleigh_distribution&oldid=997166230
- 67
Weisstein, Eric W. "Rayleigh Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RayleighDistribution.html
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Rayleigh distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a value of x that is less than 0
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.SemiInfinite[source]¶
Bases:
univariate._base.Base
- Description:
Base class for probability tags.
- class source.univariate.SemiInfinite.Weibull(shape: float, scale: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning Weibull Distirbution [#]_ [#]_.
\[\text{Weibull}(x;\lambda, k) = \frac{k}{\lambda} \Big( \frac{x}{\lambda}\Big)^{k-1} \exp(-(x/\lambda)^k)\]- Parameters
shape (float) -- shape parameter (\(\lambda\)) where shape >= 0
scale (float) -- scale parameter (\(k\)) where scale >= 0
randvar (float) -- random variable where x >= 0
- Reference:
- 68
Wolfram Alpha (2021). Weibull Distribution. https://www.wolframalpha.com/input/?i=weibul+distribution.
- 69
Wikipedia contributors. (2020, December 13). Weibull distribution. https://en.wikipedia.org/w/index.php?title=Weibull_distribution&oldid=993879185
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of cdf at x
- Return type
Union[float, numpy.ndarray]
- entropy() float [source]¶
Returns: differential entropy of the Weilbull distribution.
Reference: Park, S.Y. & Bera, A.K.(2009). Maximum entropy autoregressive conditional heteroskedasticity model. Elsivier. link: http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- class source.univariate.SemiInfinite.WeibullInverse(shape: float, scale: float, loc: float)[source]¶
Bases:
source.univariate.SemiInfinite.SemiInfinite
This class contains methods concerning inverse Weilbull or the Fréchet Distirbution [#]_.
\[\text{WeibullInverse}(x;a,s,m) = \frac{a}{s} \Big(\frac{x-m}{s} \Big) ^{-1-a} \exp{\Big(-\frac{x-m}{s} \Big)^{-a}}\]- Parameters
shape (float) -- shape parameter (\(a\)) where shape >= 0
scale (float) -- scale parameter (\(s\)) where scale >= 0
loc (float) -- loc parameter (\(m\))
randvar (float) -- random variable where x > loc
- Reference:
- 70
Wikipedia contributors. (2020, December 7). Fréchet distribution. https://en.wikipedia.org/w/index.php?title=Fr%C3%A9chet_distribution&oldid=992938143
- cdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- data point(s) of interest
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
- pdf(x: Union[List[float], numpy.ndarray, float]) Union[float, numpy.ndarray] [source]¶
- Parameters
x (Union[List[float], numpy.ndarray, float]) -- random variable(s)
- Raises
ValueError -- when there exist a random variate less than or equal to loc parameter
- Returns
evaluation of pdf at x
- Return type
Union[float, numpy.ndarray]
Module contents¶
We want to avoid name collisions and keep our names in the module they are defined in. There are two ways we can deal about it: - using __all__ = [DO_NOT_WILD_IMPORT] to avoid from [module] import * - specify which class you are importing e.g. `from .Base import Base